Weighted ℓ1 minimization for sparse recovery with prior information

نویسندگان

  • M. Amin Khajehnejad
  • Weiyu Xu
  • Amir Salman Avestimehr
  • Babak Hassibi
چکیده

In this paper we study the compressed sensing problem of recovering a sparse signal from a system of underdetermined linear equations when we have prior information about the probability of each entry of the unknown signal being nonzero. In particular, we focus on a model where the entries of the unknown vector fall into two sets, each with a different probability of being nonzero. We propose a weighted £1 minimization recovery algorithm and analyze its performance using a Grassman angle approach. We compute explicitly the relationship between the system parameters (the weights, the number of measurements, the size of the two sets, the probabilities of being non-zero) so that an iid random Gaussian measurement matrix along with weighted £1 minimization recovers almost all such sparse signals with overwhelming probability as the problem dimension increases. This allows us to compute the optimal weights. We also provide simulations to demonstrate the advantages of the method over conventional £1 optimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted ℓ1-Minimization for Sparse Recovery under Arbitrary Prior Information

Weighted l1-minimization has been studied as a technique for the reconstruction of a sparse signal from compressively sampled measurements when prior information about the signal, in the form of a support estimate, is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted l1-minimization when arbitrarily many distinct weights are permitted. ...

متن کامل

Optimal incorporation of sparsity information by weighted ℓ1 optimization

Compressed sensing of sparse sources can be improved by incorporating prior knowledge of the source. In this paper we demonstrate a method for optimal selection of weights in weighted l1 norm minimization for a noiseless reconstruction model, and show the improvements in compression that can be achieved.

متن کامل

Recovery of signals by a weighted $\ell_2/\ell_1$ minimization under arbitrary prior support information

In this paper, we introduce a weighted l2/l1 minimization to recover block sparse signals with arbitrary prior support information. When partial prior support information is available, a sufficient condition based on the high order block RIP is derived to guarantee stable and robust recovery of block sparse signals via the weighted l2/l1 minimization. We then show if the accuracy of arbitrary p...

متن کامل

Weighted ℓ1-Minimization for Generalized Non-Uniform Sparse Model

Model-based compressed sensing refers to compressed sensing with extra structure about the underlying sparse signal known a priori. Recent work has demonstrated that both for deterministic and probabilistic models imposed on the signal, this extra information can be successfully exploited to enhance recovery performance. In particular, weighted l1-minimization with suitable choice of weights ha...

متن کامل

Beyond ℓ1-norm minimization for sparse signal recovery

Sparse signal recovery has been dominated by the basis pursuit denoise (BPDN) problem formulation for over a decade. In this paper, we propose an algorithm that outperforms BPDN in finding sparse solutions to underdetermined linear systems of equations at no additional computational cost. Our algorithm, called WSPGL1, is a modification of the spectral projected gradient for `1 minimization (SPG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009